Monday, July 20, 2009

From Whence He Came

This site is devoted to the inventive genius of Mr. Charles Havelock Taylor. The information contained in this historic account is taken from engineering journals, family photo albums and the personal memoires of two families.

Born in Chatham New Brunswick January 20, 1859, Charles was the eighth child and first born son of Mary (Palmer) Taylor born 1820, died 1906 and Charles Taylor born 1817, died 19??. (left)

The Taylors were one of the pioneer families from England, who first settled in New York State in 1710. During the American Revolution the family joined many other United Empire Loyalists and moved north to New Brunswick.

His Father, pictured above with wife Mary, was a saw-mill contractor. Charles' stay in the Chatham area was short as when his father completed the building of a mill, the family moved on to the next location. The constant moving affected his schooling although it is known that during his boyhood he attended school in Matapedia, a small logging settlement, which is on the border of New Brunswick and Quebec, and at Kedgwick near by. (photo at right is a family gathering in New Brunswick).

At the age of 12 Charles' family moved to Levis Quebec a sleepy little village overlooking the picturesque "Old" City of Quebec. To attend school he had to cross the river. Winter was the only time when the river could be safely traversed. As a result the school year was short and his formal education terminated at spring break-up. He acheived the level of 6th grade before he was forced to quit for good.

In 1876 his family moved to Montreal. It is here that that he embarked upon a career that would lead to great feats of engineering. His father won a contract to construct a section of the Lachine Canal.

Being a self-educated man and possessing strong analitical skills Charles began his work career with his father. It was not long before Taylor's entrepreneurial skills and ingenuity came to the forefront. He contracted for the task of pumping water out of excavation sites while work on the canal proceeded. Up until this time only steam driven pumps were used for this type of work but for Taylor and his creative mind there had to be a better way. He struck upon the novel idea of siphoning off the water. He offered to do the work for a mere 20 dollars a day, much below cost of the steam pump used at the time. His method was absurdly simple and Charles was able to sit back and reap the benefits of his idea. Twenty dollars a day was a lot of money at a time when the economy of the country had fallen on hard times. He generously used his new found wealth to help his father and the family.

Acknowledgements: Richard Hillary (grandson of CH. Taylor) as well as Roy and Charles (Bud) Taylor (sons of CH Taylor) .

**** THE COMMENT SECTION IS OPEN**** The comments are moderated. Those not relevant to the history of CH Taylor will NOT be posted.
 
The First Family

In 1880 Charles, while living in Montreal, met and married Helen Maria Pye (born 1866; died 1929). Helen bore Charles (seated) three children Eva born 1883; died 1962 (wearing hat) Arthur Havelock born 1894; died 1964 and Helen born 189?; died 1921.
In 1905 the family took up residence in Haileybury Ontario while Charles built the Air Plant at Ragged Chutes.

Eva married Robert (Bob) Turner Andrea in 191? in Haileybury Ontario. Bob had come to Cobalt in 1909 after completing his post secondary education at the General Electric Technical School in Schenectady NY. He first came as inspector of air meters in the silver mines and later became chief engineer for the Northern Ontario Light and Power Company.

This was at a time when Charles H. Taylor was constructing the Ragged Chutes Air Plant to supply the burgeoning mining industry in Cobalt Ontario.

Eva and Bob moved to Montreal in 1928 when Bob was appointed statistian for the Power Corporation of Canada. Eva was a skilled concert pianist and played at the Cobalt Opera House in the early part of the century.

In 1911 Arthur was sent off to school at Feller Institute in Grande Ligne Quebec where he played hockey (back row, far right). After completing his education Arthur remained in Montreal where he met a young French Protestant girl, Jeanne Piche, whom he married in 1917. Jeanne and Arthur purchased a farm in Three Hills Alberta in 1919 and set out to try their hand at farming. Jeanne bore Arthur a son, Russell, who died within four months of his birth. Then in 1921 Francis Kathleen (my mother) was born. In 1924 Jeanne had another son whom they again named Russell. The boy was born with a birth defect and passed away in 1933.

Arthur and Jeanne were benevolent people and were known to take foster children. One of their children, Herbert Harrison Taylor, came to live with them as a young boy. Once Herbert became of age he was given the opportunity to chose his parents, just as they had chosen him. Herbert opted to be a Taylor and I was priviledged to have an uncle.

Helen, the youngest child of Charles and his first wife remained in Haileybury and in 1916 she married Grahame Hennesy. Helen's health was not good and by 1920 it had become quite serious, she passed away in 1921.
The Second Family

In 1910 while on a trip to England Charles met a young girl by the name of Gertude Mabel Morgan. Smitten by her beauty he brought Gertrude to Canada. First family rumor and inuendo has it that Gertude was brought to Canada as a housekeeper. Like all stories of this kind it is tempered by age and literary license. Neither family knows for sure what the circumstances were.

None the less Gertrude and Charles were married in Buffalo New York in 1911. They came to Toronto Ontario to live and, for the first year, they occupied a suite at the Prince George Hotel. The following year they moved to a house on Wolfrey Avenue.

Gertrude and Charles had 5 children together, Sylvia born 1915, Charles Havelock (Bud) born 19??, Phyllis born 19?? ; died 1941, Roy born 19?? and Ray born 19?? (deceased).

Note: I am awaiting photos and additional information with regard to the second family.




Lifes little ironies:

In the summer of 2001 I was in contact with the Cobalt Ontario Museum discussing a photo album I have depicting the town from 1905 to 1910. Cobalt has been awarded the distinction of being the "Most Historic Town" in Ontario. During the period from 1905 to 1910 Charles H. Taylor designed, engineered and built the Ragged Chutes Air Plant on the Montreal River.

During this conversation I was asked about Charles accompishments after he had left my great grandmother Helen. Jokingly I responded that he would have to contact the other side of the family. Ironically less than 3 weeks later I received a call from the museum and a voice says " I have good news" then he says "well I'm not sure if you will think it is good or bad", "I heard from the second family", "They would love to hear from you". Since that day we have exchanged stories, pictures and the occasional phone call.

At that time I spoke to Terry Mandzy the husband of Joan Taylor the daughter of (Bud) Taylor. We had great plans to get together but as life would have it we have yet to meet. However, my mother Francis Taylor Hawkins was visiting me here in Burlington Ontario and while returning to Quebec we were able to visit with (Bud). Interestingly Bud is nearly the same age as Francis but in the scheme of things Bud is her uncle.

And for the record, I recognized Bud as he stood in the picture window of his home, he is the spitting image of my grandfather Arthur, the first born son of Charles Havelock Taylor and his first wife Helen.
1878 to 1895 The Formative Years

Charles Havelock Taylor was not a man of idle mind nor body, he kept busy with work and with hobbies. His favorite hobby was photography an art that he was to become quite adept at. He carried the heavy bulky apparatus wherever he travelled recording his work, nature and the people he came in contact with. The photos contained in this blog are those taken by Charles between 1895 and the 1920's. This hobby remained a source of pleasure for him throughout his life.His business career during this period of his life reads like a best selling novel.

In the early stages of his career, mining was a prominent part of his life, and became the stepping stone to his success.

In the early 1880's he began a 10 year term as Mining Claim Investigator for his uncle, who owned the Howard Watch Company of New York. This position led to much travel throughout most of North America.At one point he was sent to North Carolina to investigate placer gold mines and was so taken by the heat and humidity that he nearly fainted while walking from the train station to the mine head. One has to realize that at this time in our history men wore shirt and tie, a botany serge suit and vest as well as a hat at all times when at work.

Then in 1891 he was sent to the Cripple Creek gold discovery in Colorado. Some 50,000 people swarmed into the area, near Pike's Peak, in search of fame and fortune. These were the days of opportunity and wealth however there were those who conspired to take advantage of the nieve money hungry newcomers. While investigating these mines, he saw many instances of salting, a practice whereby mine owners spread gold particles around mine shafts. This was done to entice unsuspecting buyers into purchasing an otherwise worthless mine.

During this period in his career he also acted as a consulting geologist for several mining concerns. Charles had an uncanny ability for tracing lost ore veins in mines. At this time he started building an extensive mineral collection and over the years he gathered some remarkable ore samples.

His interest in this field did not wane. Around 1890 he discovered a gold vein in Madoc, Ontario. He built a mine and operated it for several years before selling out. At one point in the 1880's he built and owned Montreal's first steam laundry. Later on he and two business associates built a skate factory. The machines and skates were designed and built by Taylor himself. With this practicle knowledge of mechanics and engineering he some became known as a qualified engineer.

With each adventure Taylor gained greater insite into the mining industry and it is here that his greatest acheivements would eventually be realized.

1895 to 1914 From the Smallest Observation Came a Great Invention

In 1895 while building a dam in Buckingham Quebec Taylor noticed that air bubbles that were trapped in the water as it flowed over the spillway were carried under the ice and formed ice domes. When he broke one of the domes with a pipe he realized that the air was pressurized. Insignificant as this may appear to some, Taylor's mind was quick to grasp the industrial possibilities of this phenomenon. He made a working model of a compressor in a warehouse in Montreal. Glass tubing was integrated int the model so that all could see the operation of the machine and as experiments progressed modifications could be made to enhance efficiency.

Charles courted prominent businessmen from the period and, after a demonstration of the models ability to generate compressed air, he was able to build the first of his Air Plants with monies obtained from the investors and the Taylor Air Compressor Company was started.

The first plant to be built was at Magog Quebec for the Dominion Cottom Mills (later to become dominion Textile). It was a 155 horsepower compressor delivering air at 52 lbs. per sq. inch. It was 60% efficient and was still in operation in 1953. It was not untill the mid 1970's that an engineer from the US advised Dominion Textile to upgrade their weaving equipment rendering the compressor obsolete.

Then in 1898, at Ainsworth B.C., he organized the Kootney Air Supply Company and built a 600 H.P. compressor supplying air at 100 p.s.i. this required the construction of a 1354 foot closed wooden flume to develope enough water pressure. It was intended to supply the Kaslo Mining Co., a new copper mine.

The Great Northern Railroad did not build its promised spur line to the mine and so the compressor closed down. Taylor paid the $60,000 dolar construction costs to the financial backers out of his own pocket. This was a severe setback to his plans.

An order from the Dominion Government for a 45 H.P. compressor for the Peterborough Lift lock on the Severn Trent waterway in 1899 helped the company out.
















The Hydraulic Air Compressor - a brief history

The following is an extract from a thesis written by Roy G. Taylor son of Charles H. Taylor and Mabel Morgan. The thesis was submitted in partial fulfillment of the requirements for the degree of Bachelor of Applied Science.

Dept. of Mechanical Engineering,
University of Toronto,
Oct. 31, 1951

Roy is a member of Charles Taylor's second family. He acquired his Engineering degree and worked in the family business with his father Charles H. Taylor Sr. and his older brother Charles (Bud) H. Taylor until they closed down the business. Roy has since retired but has remained both active and creative.

History:

It may be of interest to the reader to know at least a brief history concerning the developmentof this compressor, therefore at this point I will present a review of the major events that led to its first successful application.

One of the earliest forms of compressed air devices had its origin in the early years of the iron age and was known as the trompe or hydraulic air blast for forges. Its purpose was to supply the Catalan forges with a steady blast of air. The preassure produced in this type of compressor were of a very small magnitude being in the neighborhood of one ounce (1 oz.) to one pound per square inch (1 lb./sq. in.) The best type of construction in trompe mechanism was one wherein the range of the apparatus could be produced by means of a sliding gate. The operation of the apparatus may be explained by referring to figure 1. Water falling into the tube draws air through the small inclined holes, indicated by arrows, and carries this air down into the reservoir where the air separates from the water and escapes to the forge. The outlet column is high enough to balance the pressure maintained in the reservoir.



























In the year 1877, Mr. J.P. Frizell carried out tests
of a practical scale on this system utilizing a 5 ft. fall and a 36 ft. shaft at the falls of St. Anthony near St. Paul on the Mississippi River. From his tests he proposed a system known as the Frizell system, see figure 2., for which he secured patents. Later compressors were somewhat similar to this system but the actual design involved was quite different in certain respects.























The next major step was made by Mr. C. H. Taylor in 1896 at Magog, Quebec where he erected the first working hydraulic air plant on a practicle scale. The Taylor plant, although essentially utilizing the method outlined by Frizell, was materially different in detail and proportioning of the various parts of the plant. It may be noted here that Mr. Taylor discovered the principle himself by noting how water flowing down the spillway of a dam carried a certain amount of air with it as it plunged under the surface of the river ice. This air carried downstream by the flowing water, released itselt from the water and formed large pockets of air under the ice. This caused the ice to bulge upwards and when he broke one of the pockets and discovered that air under pressure was trapped here he also discovered this principle that he put to much use. Thus independent and ignorant of any other proposed system, he erected at Magog the first plant for the purpose of supplying air to a cotton mill.

The air supply from this plant was ample for the needs of the mill and its success here led to its further application in the field of mining. The efficiency of the plant at Magog though relatively high was improved on by a better proportioning of the parts and the later plants had efficiencies of 82%, an improvement of 20% over the Magog plant. Three separate patents were obtained by Taylor for his design of the hydraulic air compressor in 1896, 1898 and 1900.





Sketches and links














The following links connect to historical sites, Engineering Societies and blog sites that support the engineering and historical significance of Charles Havelock Taylor's design of the Hydraulic Air Compressor.

http://www.cobalt.ca/index.php?option=com_content&view=article&id=49&Itemid=57





Kootenay Plant Sketch:

There appear to be conflicting stories with regard to the Kootenay Air Plant at Ainsworth BC. In the second family account it was said to be rendered inoperable due to the lack of a spur line to the mines and that Taylor had paid back the investors from his own pocket however, I received the following email response from the Kootenay Historical Society;

Dear Mr. Hawkins,
Your message to Nelson was forwarded to us at the Kootenay Lake Archives. However, our internet server is being changed there and so I am replying from my home.
Here is the information that I have found on the Coffee Creek compressor (as we call it) found in "High Grade and Hot Springs - A History of the Ainsworth Camp" by E.L. Affleck 2001.
Page 6: "One of the most interesting early mining plants in the camp was a non-mechanical gravity air compressor, a Taylor air compressor, installed in 1897 on the north canyon wall of Coffee Creek. This device, working on a principle patented by C.H. Taylor of Montreal, compressed air by employing falling water. The plant, using flumed water from Coffee Creek, had a capacity of 5000 cubic feet of free air per minute at 85 pounds per square inch and developed 600 horsepower. The water was dropped vertically down a wood-stave pipe (existing pictures indicate metal pipe, which presumably replaced the initial wood installation) into a vertical shaft about 100 feet deep at the edge of the creek. The air was piped two to three miles to mines as far away as the "United" until about 1910. The "BC Mining Record" of September 1906 carried a detailed description of this plant. One would have anticipated a huge market for this compression device, but it was said that the process leached most of the oxygen out of the air, with the result that the oxygen-starved compressed air piped into underground passages was lethal to workers. This could account for the poor performance of the Taylor Air Compressor in the market." A photograph of the compressor on page 2 is captioned with a statement saying that the compressor collapsed in 1916. See also Page 49.

I hope that this is useful information for you. Sorry not to be able to report that it is still in use or that there are parts of it around.

Sincerely,

Elizabeth Scarlett
Volunteer Archivist
Kootenay Lake Archives
Kootenay Lake Historical Society
Box 537
KASLO, BC V0G 1M0
CANADA
Tel: 250-353-9633
The Archives is open on Monday evenings 7:00 - 9:00 p.m. and Thursday
mornings 9:00 a.m. to Noon except holidays.

Check out our website at www.klhs.bc.ca/archives
<
http://www.klhs.bc.ca/archives>

The statements that "the process leached most of the oxygen out of the air" and "oxygen starved air piped into underground passages was lethal to workers" seems rather far fetched.

It is possible that toxic air was picked up through the leaching of gases within the layers of geological strata and was carried by the compressed air however, this in itself is highly unlikely due to the piping system.

The pneumatic tools used in the mining process do not extract air but rather they exhaust air. The term "oxygen starved" infers that the volume of air exhasted from the tools during each working day was greater than the volume of the mining tunnel. This is also highly unlikely.

A more likely scenario would be the cost in replacing the 1354 foot long wooden stave pipe 4 foot 6 inches in diameter, built against the side of the gorge, as well as the 110 foot high wooden tower was considered to great an expence at the time.

At this point in history it is impossible to evaluate the reasons for shutting down the plant however I must point out that this is the only system both prior to and after construction of the Kootney plant that had this problem. Cobalt produced nearly 10 times horsepower and still operated continuously up until the mid 1980's.


1895 to 1914 "continued"

These were the glory years for Charles Taylor not only was he given the honour of building a plant for the great Peterborough Lift Lock but news of his inventive genius had reached Europe.

Charles made many business trips to Europe in the late nineteenth century, and belonged to many of the best social clubs in London and Paris. He saw the Worlds Fair in 1897 at Paris France and was much impressed with the Eiffel Tower and the Hall of Mirrors.

He bought one of Toronto's first cars, a 1911 Ford, at a time when driving was an adventure. A time when gasoline was obtained only in the city center and roads were limited.

In 1901 a Fourth compressor was built in the State of Washington. Then in 1906, a general purpose compressor was constructed in Norwich Connecticut. That same year Taylor was commissioned to build a 550 Horsepower compressor for the Victoria Copper Mine in Rockland Michigan which delivered air at 117 p.s.i. Other plants were built in Tarica, Peru and in Germany.

The largest and most ambitious Air Plant was the Ragged Chutes plant at Cobalt Ontario. Taylor visited Cobalt in 1905 and determined that the conditions and the mining industry were ideally suited to his invention. Work on the plant was completed in 1910.

To finance his company he invited many prominent New York bankers to Cobalt and treated them to a fabulous hunting and fishing expedition that included a huge barbeque of choice moose steaks. Needless to say they were duly impressed with his ability as a host and engineer that he was able to secure their financial backing.


The plant at Ragged Chutes is 5500 H.P. with a 1000 H.P. reserve. A 660 foot weir dam was built across the Montreal River to control the water flow. The air is transported by means of a seamless steel pipe. These specially designed pipes were brought in from Germany. A total of 21 miles of pipe were required for the project.

(More on the Cobalt Plant in the next posting).

1905 - 1910 The building of Ragged Chutes


Ragged Chutes was Charles most ambitious project and his greatest success. The feeder shaft, 351 feet deep and 9 and 1/2 feet in diameter was sunk into the bedrock. The lower 40 feet widens to 11 and 1/2 feet in diameter. At the top of this shaft are twin intake heads each containing 72 intake pipes, 16 inches in diameter.

Water backed up behind the 660 foot wide dam swirls down through these pipes carrying air with it. When the water reaches the bottom of the shaft, it is diverterted into a 1021 foot long horizontal tunnel by a steel sheathed concrete cone.

This tunnel is 20 feet wide and 26 feet high, at the far end a bulge in the ceiling increases the height to 42 feet. The rushing water slows down in this tunnel and the air collects along the roof at approximately 120 p.s.i. A 298 foot tail shaft by 22 feet in diameter returns the water to the surface. Once at the surface it continues down the Montreal River.

The air, under pressure, in the pocket below ground is tapped off by a 24 inch diameter steel pipe and brought to the surface. Here it passes into a valve house and is distributed to the mines of Cobalt.

The air is transported to the mines via a seamless pipe, imported from Germany, specific to this project. There is a total of 21 miles of seamless pipe used for the movement of air to the various mines.

(The photo at the right is of shaft #8 it has a pencil sketch on the back presumably by Charles Taylor that was done on site.)

When more compressed air, than can be used, builds up in the chamber the water level in the tunnel is forced down exposing the end of a 12 inch release pipe. The excess air blows out 10 feet below the surface of the Montreal River resulting in a geyser plume that often reaches 200 feet in the air. It was one of the most impressive site around Cobalt during the hayday of the Air Plant.

To reduce friction and drag in the intake and tail shaft Taylor had to devise a method of drilling in the granite that would ensure a smooth vertical wall. He designed a drilling rig that allowed the men to work from a wooden platform that rotated on a central axis, thus maintaining a constant diameter. Wall fractures in the granite substrate were smoothed with cement to eliminate uneven surfaces.

There were many nay sayers at the time who did not believe Taylors calculations, there were many in the Engineering field that said it could not be done. The general feeling around Cobalt at the time was, "Taylor is crazy, a two bit, so-called engineer, self taught, little better than a mechanic with a bunch of wacky ideas". He was this and more, most visionaries are. The educated and informed doubt the abilities of those without the paper qualification however Taylor not only proved them wrong but his Air Plant was so finely engineered that it operated unabated, but for two maintenance shutdowns, up until fire destroyed it in the 1980's.

( special thanks for the text, in part, to Richard Hillary grandson of CH Taylor).

All That Remains Today














Many Thanks to Jordan Tanner and his friends at Ontario Hydro for these pictures

1905 to 1910 The mines of Cobalt